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In this paper, the nonlinear dynamic stability of a rotating shaft-disk with a transverse
crack is studied. The crack and the disk are located in arbitrary positions of the shaft
respectively. Using the equivalent line-spring model, the deflections of the system with a
crack are constructed by adding a deflection to the deflections of the uncracked system. The
unstable regions are confirmed by Runge–Kutta method and the Floquet theory. The
effects of crack depth, crack position, disk position, disk thickness and rotating speed on
the principal unstable regions are discussed. The numerical results are compared with
available data.
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1. INTRODUCTION

High-speed and light-structure is the design-trend of the modern rotating machines, but it
is easy for unstable phenomena to occur, which brings many serious accidents. Therefore,
in recent years, the dynamic stability behaviour of the rotor system has received
considerable attention. However, very little of the literature is concerned with the mass of
the shaft, the additional displacement caused by the crack and the geometric non-linearity
of the shaft.

The dynamic instability of a rotating asymmetric shaft with internal viscous damping
supported in anisotropic bearings was studied by Wettergren [1] and the results indicated
the system was unstable according to Floquet theory. The stability and vibration of a
rotating circular plate subjected to stationary in-plane edge loads were investigated by
Shen [2] and the boundaries of the unstable regions were confirmed through multiple
scales method. By using the transfer matrix method, Guilhen [3] studied the instability and
imbalance responses of unsymmetrical rotor-bearing systems. Jia [4] obtained the natural
frequencies of a Timoshenko shaft carrying elastic disks. Chung [5] studied the non-linear
vibration of a flexible spinning disk with angular acceleration. For the problem of rotor
system with crack, Papadopoulos [6–8] discussed the longitudinal and bending coupled
vibration of a cantilever beam with a transverse crack. By using a massless spring to
replace the stiffness of the location of the cracked shaft and the cosine series to describe the
rule of the stiffness which changed during the rotation, he also obtained the local flexibility
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Y. M. FU ET AL.714
matrix for an open transverse crack and discussed the stability of cracked rotors in the
coupled vibration mode. By using a hinge model to explain the stiffness of the cracked
shaft, Gasch [9] studied the dynamic behaviour of a simple rotating shaft with a transverse
crack. Moreover, [10–12] investigated the dynamic stability and forced vibration of a
cracked shaft. Sheu and Chen [13] and Chen and Pen [14] have discussed the dynamic
stability of a single rotor under axial parametric exciting. Recently, Sekhar [15] studied the
vibration characteristics of a cracked rotor with two open cracks.

All these above studies are found on the rotor system without the mass of the shaft and
did not consider the additional displacement caused by the crack. Therefore, these
analyses are only proper to a crack located at the mid-span of the shaft, while for the crack
located at the other position, the calculated results show bigger error. Moreover, the effect
of the geometric non-linearity is not considered in the above systems, but non-linear
effects have been recognized to play an important role in determining the stability of the
rotor system. In the present investigation, the mass of elastic shaft, the additional
displacement caused by the crack and the effect of the geometric non-linearity are taken
into account. And the effects of the different parameters on the non-linear dynamic
stability of the shaft-disk with a crack are discussed.

2. EQUATIONS OF MOTION

Consider a shaft of radius Rs and length l having a disk of radius Rd at location
b0 ¼ l0=l: Assume that the shaft has a crack of depth h=a/Rs at location b1 ¼ l1=l; shown
in Figure 1. The cross-section of a circular shaft with a transverse crack is shown in
Figure 2.

Also, assume the shaft to be loaded with the axial force P1; bending moments P2 in the z
direction and P3 in the Z direction. The dimension of a local flexibility matrix depends on
the number of degrees of freedom considered, here 3� 3. According to the theory of
fracture mechanics, the release rate of the strain energy for the system is [6, 7]:

J ¼ 1� n2

Es

ðKI1 þ KI2 þ KI3Þ2; ð1Þ

where n is the Poisson ratio, Es is Young’s modulus of the shaft, KI1; KI2 and KI3 are the
stress intensity factors of the opening mode for the load P1; P2 and P3; respectively, and

KI1 ¼ s1
ffiffiffiffiffi
pz

p
F1ðz=HÞ; s1 ¼ P1=ðpR2

s Þ;
KI2 ¼ s2

ffiffiffiffiffi
pz

p
F1ðz=HÞ; s2 ¼ 4P2Z=ðpR4

s Þ;
KI3 ¼ s3

ffiffiffiffiffi
pz

p
F2ðz=HÞ; s3 ¼ 2P3H=ðpR4

s Þ
ð2Þ
Figure 1. Model of shaft disk with a crack.



Figure 2. Cross-section of shaft with a crack.
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in which

F1ðz=HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan l=l

p
f0	752þ 2	02ðz=HÞ þ 0	37½1� sin l�3g=cos l;

F2ðz=HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan l=l

p
f0	923þ 0	199½1� sin l�4g=cos l;

zðZÞ ¼ a � Rs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

s � Z2
p

;

H ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

s � Z2
p

; l ¼ pz=2H:

ð3Þ

The local flexibility of the shaft due to the crack is [6, 7]

CLij ¼ @2

Z b

�b

Z z

0

JðzÞ dz dZ=@Pi@Pj ði; j ¼ 1; 2; 3Þ: ð4Þ

Substituting equations (1)–(3) into equation (4), the local flexibility matrix occurred by
crack is written as

CLoc½ � ¼
CL11 CL12 CL13

CL12 CL22 CL23

CL13 CL23 CL33

2
64

3
75

Loc

: ð5Þ

Now, the shaft is assumed to rotate with a constant speed O; and the crack is assumed to
be open at its lower position, and closed at its upper position due to gravity [8, 11]. Hence,
the additional flexibility depends on the rotating angle of the shaft and it is denoted by
matrix [C]. This variation of additional flexibility with time t can be expressed by the
truncated cosine series and written as follows:

½C� ¼ ½C0� þ ½C1�cosOt þ ½C2�cos 2Ot þ ½C3�cos 3Ot þ ½C4�cos 4Ot; ð6Þ

where ½Ci�ði ¼ 0; 1; . . . ; 4Þ is a 3� 3 matrix and can be determined by the following known
conditions:

½C� ¼ ½CLoc�; f ¼ Ot ¼ 0;

@2½C�=@f2 ¼ 0; f ¼ Ot ¼ 0;

½C� ¼ ½C0
Loc�; f ¼ Ot ¼ p=2;

½C� ¼ 0; f ¼ Ot ¼ p;

@2½C�=@f2 ¼ 0; f ¼ Ot ¼ p:

ð7Þ
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and in which

½C0
Loc� ¼

1

2

CL11 CL13 CL12

CL13 CL33 CL23

CL12 CL23 CL22

2
64

3
75

Loc

: ð8Þ

The dimensionless form of the local flexibility matrix is

%CCLoc


 �
¼

%CCL11
%CCL12

%CCL13

%CCL12
%CCL22

%CCL23

%CCL13
%CCL23

%CCL33

2
664

3
775

Loc

; ð9Þ

where:

%CCL11 ¼ pEsRsCL11=ð1� n2Þ ¼ 4

Z %bb

0

Z %zz

0

%zzF 2
1 ð %HHÞ d%zz d%ZZ;

%CCL12 ¼ pEsR
2
s CL12=ð1� n2Þ ¼ 16

Z %bb

0

Z %zz

0

%zz%ZZF2
1 ð %HHÞ d%zz d%ZZ;

%CCL13 ¼ pEsR
2
s CL13=ð1� n2Þ ¼ 16

Z %bb

0

Z %zz

0

%zzð1� %ZZ2Þ1=2F1ð %HHÞF2ð %HHÞ d%zz d%ZZ;

%CCL22 ¼ pEsR
3
s CL11=ð1� n2Þ ¼ 64

Z %bb

0

Z %zz

0

%zz%ZZ2F2
1 ð %HHÞ d%zz d%ZZ;

%CCL33 ¼ pEsR
3
s CL22=ð1� n2Þ ¼ 64

Z %bb

0

Z %zz

0

%zzð1� %ZZ2ÞF2
2 ð %HHÞ d%zz d%ZZ;

%CCL23 ¼ pEsR
3
s CL12=ð1� n2Þ ¼ 64

Z %bb

0

Z %zz

0

%zz%ZZð1� %ZZ2Þ1=2F1ð %HHÞF2ð %HHÞ d%zz d%ZZ;

%bb ¼ b=Rs; %zz ¼ z=Rs; %ZZ ¼ Z=Rs; %HH ¼ z=H:

ð10Þ

In order to describe the motion of the system and obtain the total kinetic and potential
energy of the system, two co-ordinate systems are used. An oxyz frame represents the
inertial system, and x, is the axial direction of the shaft shown in Figure 1. An o1xZz frame
is the local reference system fixed to the disk and its origin is located at the centre of the
disk, and x

,
is the normal direction of the disk. The W is an included angle by x- and x-axis.

The projective line of x is O1Py in the o1xy plane, and the projective line of x is O1Pz in the
o1xz plane. Wy is an included angle of O1Py and x-axis, and Wz is an included angle of O1Pz

and x-axis. The unit vector of the normal direction of the o1xx plane is defined as
X
, ¼ ðx, � x

,Þ=sin W; shown in Figure 3. The rigid body motion of the disk may be described
as follows: firstly, the disk rotates an angle W about X-axis. Then, the disk rotates at an
angle Ot about x-axis: Because the axial deformation of the shaft is very small compared
with the transverse deformation of the shaft, for simplifying the calculation, the axial
deformation of the shaft can be neglected. So the whirling transverse displacements of the
shaft is represented by ðvsc; wscÞ in oxyz system. The transverse displacement of the disk is
denoted by wd in the o1xZz system.

Now, the energy expressions are divided. Assume that any point P (the position vector is
r,Þ in the disk changes to P0 due to the transverse deformation wd of the disk, and the

position vector r0
,

and velocity r0
,_
of the point P0 in the disk (shown in Figure 4) are,



Figure 3. The rigid body motion of the disk.

Figure 4. The bending deformation of a disk.
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respectively,

r
* 0 ¼ r

*
oo1 þ r

*þ d
*

;

’
r
* 0r
* 0 ¼ ’

r
*
r
*

oo1

þ o
*� r

*þ
’
d
*

d
*

; ð11Þ

where

’
r
*
r
*

oo1

¼ @vsc

@t

@wsc

@t

� 
x¼l0

;

r
* ¼ r cos y Z

*þr sin y x
*

; d
*

¼ wd x
*

;

o
* ¼ Wz

’WWy � Wy
’WWz

2
þ O

 !
~xx þ ðsinOt ’WWy � cosOt ’WWzÞ~ZZ þ ðcosOt ’WWy þ sinOt ’WWzÞ~zz;

ð12Þ

Wy ¼ �@wsc

@x

����
x¼l0

; Wz ¼
@vsc

@x

����
x¼l0

:
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Therefore, the kinetic energy of the disk is

Td ¼ rdhd

2

Z Rd

Rs

Z 2p

0

’
r
*0r
*0 ’

r
*0r
*0 r dr dy ¼ 1

2
Md

@vs

@t

� �2

þ @ws

@t

� �2
" #

x¼l0

þ1

2
Jdðo2

Z þ o2
zÞ

þ 1

2
Jpo2

x þ
1

2
rdhd

Z 2p

0

Z Rd

Rs

@wd

@t

� �2
(

þ 2r½sinyoZ � cosyozÞ�
@wd

@t

� 2Or½sin yoz þ cos yoZÞwd

)
r dr dy; ð13Þ

where neglecting the effect of the crack on the rotation angle at the joint-point of the disk
and the shaft, rd is the mass per unit volume of the disk, hd is the thickness of the disk, Md

is the total mass of the disk, Jd and Jp are the rotational inertia moments of the disk mass
about the diameter and the axis, respectively, and Jp ¼ 2Jd for a symmetric disk.

The strain energy of the disk can be expressed as

Pd ¼D

2

Z Rd

Rs

Z 2p

0

@2wd

@r2
þ 1

r

@wd

@r
þ 1

r2
@2wd

@y2

� �� 2

�2ð1� nÞ @
2wd

@r2
1

r

@wd

@r
þ 1

r2
@2wd

@y2

� �

þ2ð1� nÞ @

@r

1

r

@wd

@y

� �� 2)
r dr dy; ð14Þ

where D ¼ Edh3
d=12ð1� n2Þ is the bending rigidity of the disk, Ed is Young’s modulus.

Considering the geometric non-linearity, the axial strain esx and the curvatures ksy and
ksz of the flexible curves are given by

esx ¼ 1

2

@vsc

@x

� �2

þ1

2

@wsc

@x

� �2

; ksy ¼ � @2vsc

@x2
; ksz ¼ � @2wsc

@x2
ð15Þ

and the axial internal forces Ns and the internal moments Msy and Msz are

Ns ¼
1

2
EsAs

@vsc

@x

� �2

þ @wsc

@x

� �2
" #

; Msy ¼ �EsIs

@2vsc

@x2
; Msz ¼ �EsIs

@2wsc

@x2
; ð16Þ

where As is the area of the cross-section; and Is is the axial inertia moment of cross-section
of the shaft.

In this case, the strain energy of the shaft may be expressed as

Ps ¼
1

2

Z l

0

ðesxNs þ ksyMsy þ kszMszÞ dx

¼ 1

2

Z l

0

EsAs

1

2

@vsc

@x

� �2

þ1

2

@wsc

@x

� �2
" #2

þEsIs

@2vsc

@x2

� �2

þ @2wsc

@x2

� �2
"8<

:
9=
; dx: ð17Þ

The kinetic energy of the shaft is written as

Ts ¼
1

2

Z l

0

rsAs
@vsc

@t

� �2

þ @wsc

@t

� �2
" #

dx; ð18Þ

where rs is the mass density of the shaft.
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The crack-released energy is obtained as

Pk ¼ 1

2
�EsIs

@2vsc

@x2
�EsIs

@2wsc

@x2

� 
x¼l1

C22 C23

C23 C33

" # �EsIs

@2vsc

@x2

�EsIs

@2wsc

@x2

2
664

3
775

x¼l1

: ð19Þ

As an approximate method, it is possible to divide the entire shaft into two sub-shafts
connected by massless springs representing the crack, and to introduce the connecting
conditions between the two sub-shafts which ensure the continuity of transverse
displacement, bending moment and shear. The continue conditions are written,
respectively, as follows:

vscjx¼lþ
1
¼ vscjx¼l�

1
; wscjx¼lþ

1
¼ wscjx¼l�

1
;

@2vsc

@x2

����
x¼lþ

1

¼ @2vsc

@x2

����
x¼l�

1

;
@2wsc

@x2

����
x¼lþ

1

¼ @2wsc

@x2

����
x¼l�

1

;

@3vsc

@x3

����
x¼lþ

1

¼ @3vsc

@x3

����
x¼l�

1

;
@3wsc

@x3

����
x¼lþ

1

¼ @3wsc

@x3

����
x¼l�

1

:

ð20Þ

Moreover, the following conditions of equilibrium between bending moment and rotation
of the spring are needed at the cracked section due to the slope discontinuity:

@2vsc

@x2

����
x¼lþ

1

�@2vsc

@x2

����
x¼l�

1

¼ C22EsIs

@2vsc

@x2

����
x¼l1

;

@2wsc

@x2

����
x¼lþ

1

�@2wsc

@x2

����
x¼l�

1

¼ C33EsIs

@2wsc

@x2

����
x¼l1

:

ð21Þ

Since the crack is theoretically of zero thickness, the transverse deflection of the cracked
shaft consists of the deflection of the shaft without crack and the additional deflection [16].
Then the deflections of the cracked shaft are given as

vsc ¼
vs � ð1� b1ÞxC22EsIs

@2vs

@x2

����
x¼l1

; 04x4l1;

vs � b1ðl � xÞC22EsIs
@2vs

@x2

����
x¼l1

; l14x4l;

8>>><
>>>:

ð22aÞ

wsc ¼
ws � ð1� b1ÞxC33EsIs

@2ws

@x2

����
x¼l1

; 04x4l1;

ws � b1ðl � xÞC33EsIs

@2ws

@x2

����
x¼l1

; l14x4l:

8>>><
>>>:

ð22bÞ

As an approximate treatment, the displacements of the shaft and the disk substructures
will be assumed in a series form of a linear combination of the weighted admissible
functions. Due to the fact that only one-nodal diameter modes of the disk couple with the
shaft bending modes [4], the transverse displacement of the disk can be written as

wdðr; y; tÞ ¼ WdðrÞ½Tn

d1ðtÞcos yþ Tn

d2ðtÞsin y�; ð23Þ

where WdðrÞ is the row vector consisting of the admissible functions of the disk, Tn
d1ðtÞ and

Tn
d2ðtÞ are the column vectors consisting of the corresponding time-dependent generalized

co-ordinates of the disk.
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Here, assume that the spinning disk is clamped at the inner radius r=Rs, and is free at
the outer radius r=Rd. Then, the inner-clamped boundary conditions are

wd jr¼Rs
¼ 0; wd jr¼Rd

¼ 0 ð24aÞ

and the outer-free boundary conditions are

@2wd

@r2

�
þn

@wd

r@r
þ @2wd

r2@y2

� �
r¼Rd

¼ 0;

@

@r
r2wd þ ð1� nÞ

r2
@2

@y2
@wd

@r
� wd

r

� �� 
r¼Rd

¼ 0:

ð24bÞ

The shaft bending displacements are expressed as

vsðx; tÞ ¼ VsðxÞTvðtÞ; wsðx; tÞ ¼ WsðxÞTwðtÞ; ð25Þ

where VsðxÞ and WsðxÞ are the row vector consisting of the admissible functions of the
shaft, and TvðtÞ and TwðtÞ are the column vectors consisting of the corresponding time-
dependent generalized co-ordinates.

Here, assume that the shaft is simply supported at the two ends. So, the ith natural
modes for the shaft is given as

VsiðxÞ ¼ lsin
ipx

l
; WsiðxÞ ¼ lsin

ipx

l
; ði ¼ 1; 2; . . . ; nÞ: ð26Þ

The ith natural mode of the disk is defined by

WdiðrÞ ¼ ðr � RsÞiþ2ðai þ bir þ cir
2Þ; ði ¼ 1; 2; . . . ; nÞ: ð27Þ

Substituting equations (27) into equations (24b), the boundary conditions may be
rewritten as

d2Wdi

dr2
þ n

dWdi

r dr
� Wdi

r2

� �
¼ 0; r ¼ Rd

dðr2WdiÞ
dr

� ð1� nÞ1
r2

dWdi

dr
� Wdi

r

� �
¼ 0; r ¼ Rd ði ¼ 1; 2; . . . ; nÞ; ð28Þ

where

r2 ¼ d2

dr2
þ d

r dr
� 1

r2
:

The ai, bi, ci are determined from the boundary conditions given by equations (28) and the
normalizing conditions are given by

WdiðRdÞ ¼ 1 ði ¼ 1; 2; . . . ; nÞ: ð29Þ

For simplified calculation, the first order modes of expressions (23) and (25) are
substituted into equations (13), (14) and (17–19). Let T ¼ Ts þ T�

d ; P ¼ Ps þPd þPk

and they represent the total kinetic energy and potential energy, respectively, where the
detailed expressions are presented in Appendix A. Now, the Lagrange equations are
employed and can be written as

d

dt

@T

@ ’qqj

� @T

@qj

þ @P
@qj

¼ 0 ð j ¼ 1; 2; 3; 4Þ: ð30Þ

Substituting the expressions of T andP into equation (30), and noting that the generalized
co-ordinates qj ði ¼ 1; 2; 3; 4Þ is Tv; Tw; T�

d1 and T�
d2; then, introducing the following
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dimensionless parameters:

%VVsð %xxÞ ¼ VsðxÞ=l; %WW sð %xxÞ ¼ WsðxÞ=l; %WW dð%rrÞ ¼ WdðrÞ=Rd ; %xx ¼ x=l;

%rr ¼ r=Rd ; t ¼ oc1t; %OO ¼ O=oc1; g1 ¼ Rs=l; g2 ¼ Rd=Rs; g3 ¼ hd=Rd

g4 ¼ rd=rs; g5 ¼ Ed=Es ð31Þ

where oc1 is the first fundamental vibration frequency of the shaft without crack. The
dimensionless equations of motion of the system are obtained and can be written as

½j9 þ j5 � 2j1
%CC22 þ j2

%CC
2

22� .TTv � j14
.TT
�
d1 þ ½�2j1

’%CC%CC22 þ 2j2
%CC22

’%CC%CC22� ’TTv � 2 %OOj14
’TT
�
d2 þ %OOj17

’TTw

þ ½�j1
.%CC%CC22 þ j2

%CC22
.%CC%CC22 � j11

%CC22 þ j7�Tv � j12
%CC23Tw þ ½j18 þ j19

%CC22 þ j20
%CC33

þ j21
%CC22

%CC33 þ j22
%CC
2

22 þ j23
%CC
2

33 þ j24
%CC22

%CC
2

33 þ j25
%CC
2

22
%CC33 þ j26

%CC
2

22
%CC
2

33�TvT2
w

þ ½j27 � j28
%CC22 þ j29

%CC
2

22 � j30
%CC
3

22 þ j31
%CC
4

22�T3
v ¼ 0; ð32aÞ

½j10 þ j6 � 2j3
%CC33 þ j4

%CC
2

33� .TTw � j15
.TT
�
d2 þ ½�2j3

’%CC%CC33 þ 2j4
%CC33

’%CC%CC33� ’TTw þ 2 %OOj15
’TT
�
d1 � %OOj17

’TTv

þ ½�j3
.%CC%CC33 þ j4

%CC33
.%CC%CC33 � j13

%CC33 þ j8�Tw � j12
%CC23Tv þ ½j18 þ j19

%CC22 þ j20
%CC33

þ j21
%CC22

%CC33 þ j22
%CC
2

22 þ j23
%CC
2

33 þ j24
%CC22

%CC
2

33 þ j25
%CC
2

22
%CC33 þ j26

%CC
2

22
%CC
2

33�T2
v Tw

þ ½j32 � j33
%CC33 þ j34

%CC
2

33 � j35
%CC
3

33 þ j36
%CC
4

33�T3
w ¼ 0; ð32bÞ

.TT
�
d1 �

j14

j16

.TTv � 2 %OO
j15

j16

’TTw þ 2 %OO ’TT
�
d2 þ ða2 � %OO

2ÞT�
d1 ¼ 0; ð32cÞ

.TT
�
d2 �

j15

j16

.TTw þ 2 %OO
j14

j16

’TTv � 2 %OO ’TT
�
d1 þ ða2 � %OO

2ÞT�
d2 ¼ 0: ð32dÞ

Note that the superscript (.) denotes differentiation with respect to time t; and the terms a2

and jiði ¼ 1; . . . ; 36Þ are given in Appendix B.

3. SOLUTION METHODOLOGY

Firstly, consider the linear dynamic stability of the system. Omitting the non-linear
terms in equations (32), the linear equations with time-dependent coefficients are obtained.
According to the theory of linear differential equations with periodic coefficients, the
boundaries between stable and unstable regions can be constructed by periodic solutions
with period T and 2T in which T ¼ 2p= %OO: So, the solutions with period 2T in terms of t
can be taken in the form of

TwðtÞ ¼
P1

k¼1; 3; 5; ...

awkcos
k %OOt
2

þ bwksin
k %OOt
2

� �
;

TvðtÞ ¼
P1

k¼1; 3; 5; ...

avkcos
k %OOt
2

þ bvksin
k %OOt
2

� �
;

Tn
d1ðtÞ ¼

P1
k¼1; 3; 5; ...

ad1kcos
k %OOt
2

þ bd1ksin
k %OOt
2

� �
;

Tn
d2ðtÞ ¼

P1
k¼1; 3; 5; ...

ad2kcos
k %OOt
2

þ bd2ksin
k %OOt
2

� �
: ð33aÞ
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The solutions with period T in terms of t can be taken in the form of

TwðtÞ ¼ bw0 þ
P1

k¼2; 4; 6; ...

awkcos
k %OOt
2

þ bwksin
k %OOt
2

� �
;

TvðtÞ ¼ bv0 þ
P1

k¼2; 4; 6; ...

avkcos
k %OOt
2

þ bvksin
k %OOt
2

� �
;

Tn
d1ðtÞ ¼ bd10 þ

P1
k¼2; 4; 6; ...

ad1kcos
k %OOt
2

þ bd1ksin
k %OOt
2

� �
;

Tn
d2ðtÞ ¼ bd20 þ

P1
k¼2; 4; 6; ...

ad2kcos
k %OOt
2

þ bd2ksin
k %OOt
2

� �
: ð33bÞ

substituting series (33a) or (33b) into the linear differential equations deriving from
equations (32), and equating the coefficients of the sin k %OOt=2 and the cos k %OOt=2 terms, a
set of linear homogeneous algebraic equations with the unknown coefficients
awk; bwk; :::; bd2k can be obtained. The condition for the set of linear equations to have
non-trivial solutions is the coefficient determinant of the equations equal to zero. From
those, the critical frequencies and the coefficients are determined, and the boundaries of
the dynamic unstable regions can be obtained.

In order to validate that analysis is reasonable in this paper, the obtained results are
compared with available results shown in Figure 5. The principal dynamic unstable
regions are indicated by the areas between the two curves and the solid line denotes the
present result, while the point line denotes the result in reference [11]. It is shown that
the results approximately agree with each other, but there is also a little difference, because
the displacement of the cracked shaft is chosen as that of the uncracked shaft mode in
reference [11], while in this paper, the displacement of the cracked shaft is that of the
uncracked shaft adding an additional deflection caused by the crack.

For obtaining a more simplified calculation pattern, the dynamic unstable regions of the
linear system for the shaft carrying rigid disk or elastic disk are calculated, compared and
shown in Figures 6 and 7, in which the Poisson ratio n ¼ 0	3 and the principal dynamic
unstable regions are indicated by the areas between the two curves. Figures 6 and 7 show
that the difference is little between the linear elastic shaft carrying elastic disk and the
linear elastic shaft carrying rigid disk for the principal unstable regions. So, the transverse
displacement of the disk due to elastic deformation will be neglected in the present
analysis.
Figure 5. A comparison of the principal dynamic unstable region (v=0	3, g1=0	05, g2=0, g3=0, g4=0, g5=0,
b0=0, b1=0	5).



Figure 6. Effect of the flexibility of the disk on the linear principal dynamic unstable regions (g1=0	05, g2=5,
g3=0	1, g4=1, g5=1, b0=0	6, b1=0	4).

Figure 7. Effect of the flexibility of the disk on the linear principal dynamic unstable regions (g1=0	05, g2=5,
g3=0	1, g4=1, g5=1, b0=0	5, b1=0	5).
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Then, consider the nonlinear dynamic stability of the system. According to the above
analysis and for simplifying the non-linear equations of motion (32), the elastic
deformation of the disk can be neglected and the simplified non-linear equations of
motion of the system can be written as

’qqðtÞ ¼ AðtÞqðtÞ þ f ðqðtÞ; tÞ; ð34Þ

where qðtÞ ¼ ðTv; ’TTv; Tw; ’TTwÞT; AðtÞ ¼ Aðtþ TÞ is the coefficient matrix and f ðqðtÞ; tÞ is
the non-linear terms. According to the Floquet theory on the stability of the non-linear
differential equations, the motion of the system is stable even though exiting the high order
differential term in the system, if the real part of the eigenexponent of the system is
negative for all periodic motions. So that, qð0Þ is chosen to be the unit matrix and qðtÞ is
formed by using Runge–Kutta method in the numerical calculations. There exists a non-
singular constant matrix F which satisfies qðtþ TÞ ¼ FqðtÞ: When t ¼ 0 and qð0Þ ¼ I ;
this leads to F ¼ qðTÞ: Therefore, the state transition matrix F can be produced by
integrating equation (18) numerically that is done four times, and a solution qðiÞðtÞ ði ¼
1; . . . ; 4Þ is obtained in each time corresponding to a column matrix of initial conditions.
In column matrix, all its elements are equal to zero except the element in the ith row, which
is equal to 1. Finally, the F is determined by evaluating the qðtÞ when letting t ¼ T :
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From the Floquet theory, the stability criteria of the system are identified by the
eigenvalues l of the following eigenequation:

Det½lI � F� ¼ 0:

And the stability criteria are briefly described as follow [17]: the system is asymptotically
stable when lij j51ði ¼ 1; . . . ; 4Þ; the system is stable when lij j41ði ¼ 1; . . . ; 4Þ and at least
one of them equals to 1 with its algebraic multiplicity n being equal to the geometric
multiplicity m; the system is unstable when at least one of lij jði ¼ 1; . . . ; 4Þ is greater than
1, or at least one of lij jði ¼ 1; . . . ; 4Þ is equal to 1 whose m5n.

4. NUMERICAL RESULTS AND DISCUSSION

Several examples for the linear or non-linear principal dynamic unstable regions of
rotating shaft-disk with the transverse crack are presented . In all cases, the Poisson ratio
n ¼ 0	3; g5 ¼ 1 and the principal unstable regions are indicated by the areas between two
curves.

In Figures 8 and 9, the effects of the thickness of the disk on the principal linear or non-
linear dynamic unstable regions of the elastic rotating shaft-disk with a crack are shown,
Figure 8. Effect of the thickness of the disk on the linear principal dynamic unstable regions (g1=0	05, g2=5,
g4=1, b0=0	5, b1=0	5).

Figure 9. Effect of the thickness of the disk on the non-linear principal dynamic unstable regions (g1=0	05,
g2=5, g4=1, b0=0	5, b1=0	5).
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respectively. It is noted that the thickness of the disk has a pronounced effect on the
dynamic stability of elastic shaft–disk rotary system. Following the increasing of the
thickness of the disk, the boundaries of the unstable regions are shifted downward,
therefore the critical speed of the system is decreased, while the areas of these unstable
regions are slightly decreased. Consequently, when designing the rotor system, the disk can
be designed as a slight structure to increase the critical speed. Meanwhile, by comparing
with the results in the figures, it can be concluded that the geometric non-linearity of the
system has certain influence on the dynamic stability of the system and it made the
unstable regions become narrower.

From Figures 10 and 11, the effects of the position of the disk on the linear or non-linear
principal dynamic unstable regions of the elastic rotating shaft-disk with a crack are given
respectively. It can be seen that adjusting the position of the disk can reform the properties
of the dynamic stability. Numerical calculations indicate that when the position of the
crack is b1 ¼ 0	4; the critical speed of the system is increased by moving the disk to the
right, meanwhile, it makes the unstable region of the system vanish when the crack is little.
But the areas of the unstable regions of the whole system become bigger.

The effects of the position of the crack on the linear or non-linear principal dynamic
instability regions of the elastic rotating shaft-disk with a crack, respectively, are shown in
Figures 12 and 13. It is observed when the position of the crack is in the mid-span of the
shaft, the system has the largest dynamic unstable region. The critical speed increases with
the increasing of the distance of the crack to the mid-span of the shaft, meanwhile, the
Figure 11. Effect of the location of the disk on the non-linear principal dynamic unstable regions (g1=0	05,
g2=5, g3=0	1, g4=1, b1=0	4).

Figure 10. Effect of the location of the disk on the linear principal dynamic unstable regions (g1=0	05, g2=5,
g3=0	1, g4=1, b1=0	4).



Figure 12. Effect of the location of the crack on the linear principal dynamic unstable regions (g1=0	05, g2=5,
g3=0	1, g4=1, b0=0	5).

Figure 13. Effect of the location of the crack on the non-linear principal dynamic unstable regions (g1=0	05,
g2=5, g3=0	1, g4=1, b0=0	5).

Y. M. FU ET AL.726
areas of the unstable regions become smaller. By comparing with the results in the figures,
it can also be concluded that the geometric non-linearity of the system has certain effect on
the dynamic stability of the system and it made the areas of the unstable regions to become
smaller.

Also, it can be observed that the depth of the crack has a pronounced influence on the
unstable regions and the critical speeds of the system from all the above figures. The areas
of the unstable regions become bigger and the critical speeds become lower with increasing
the depth of the crack.

5. CONCLUSIONS

The non-linear dynamic stability of a cracked shaft-disk rotor system has been
investigated. The principal dynamic unstable regions are confirmed by Floquet theory and
Runge–Kutta method. The effects of crack depth, crack position, disk position, disk
thickness and rotating speed on the dynamic properties of the system have been discussed.
Commonly, the areas of the unstable regions increase and the critical speeds decrease with
increasing the depth of the crack. The areas of the unstable regions become smaller and the
critical speed increases with increasing the distance of the crack to the mid-span of the
shaft. The areas of the unstable regions are slightly decreased and the critical speed is
decreased with increasing the thickness of the disk. It can also be concluded that the
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geometric non-linearity has certain effect on the dynamic stability of the system and it
made the areas of the unstable regions become smaller in all cases. Therefore, for a
cracked rotor system, the critical speed and stability of the system can be adjusted by
properly selecting the thickness, position of the disk and the crack position, etc.
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APPENDIX A

The discretized total kinetic energy and potential energy are:
For kinetic energy of disk shaft:

Ts ¼
1

2

Z l

0

rsAs

@vsc

@t

� �2

þ @wsc

@t

� �2
" #

dx

¼ 1

2

Z l1

0

rsAs

(
½VsðxÞT 0

vðtÞ � ð1� b1ÞxEsIsV
00
s ðl1ÞC0

22ðtÞTvðtÞ
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� ð1� b1ÞxEsIsV
00
s ðl1ÞC22ðtÞT 0

vðtÞ�
2

þ WsðxÞT 0
wðtÞ � ð1� b1ÞxEsIsW

00
s ðl1ÞC0

33ðtÞTwðtÞ

� ð1� b1ÞxEsIsW
00
s ðl1ÞC33ðtÞT 0

wðtÞ�
2

)
dx

þ 1

2

Z l

l1

rsAs

(
½VsðxÞT 0

vðtÞ � ð1� b1ÞxEsIsV
00
s ðl1ÞC0

22ðtÞTvðtÞ

� ð1� b1ÞxEsIsV
00
s ðl1ÞC22ðtÞT 0

vðtÞ�
2

þ ½WsðxÞT 0
wðtÞ � ð1� b1ÞxEsIsW

00
s ðl1ÞC0

33ðtÞTwðtÞ

� ð1� b1ÞxEsIsW
00
s ðl1ÞC33ðtÞT 0

wðtÞ�
2

)
dx:

For strain energy of the shaft:

Ps ¼
1

8

Z l1

0

EsAs½V 0
sðxÞ � ð1� b1ÞEsIsV

00
s ðl1ÞC22ðtÞ�4 dx

�

þ
Z l

l1

EsAs½V 0
sðxÞ þ b1EsIsV

00
s ðl1ÞC22ðtÞ�4 dx

 
T4

v ðtÞ

þ 1

4

Z l1

0

EsAs½V 0
sðxÞ � ð1� b1ÞEsIsV

00
s ðl1ÞC22ðtÞ�2½W 0

sðxÞ
�

� ð1� b1ÞEsIsW
00
s ðl1ÞC33ðtÞ�2 dx

þ
Z l

l1

EsAs½V 0
sðxÞ þ b1EsIsV

00
s ðl1ÞC22ðtÞ�2½W 0

sðxÞ

þb1EsIsW
00
s ðl1ÞC33ðtÞ�2 dx

 
T2

v ðtÞT2
wðtÞ

þ 1

8

Z l1

0

EsAs½W 0
sðxÞ � ð1� b1ÞEsIsW

00
s ðl1ÞC33ðtÞ�4 dx

�

þ
Z l

l1

EsAs½W 0
sðxÞ þ b1EsIsW

00
s ðl1ÞC33ðtÞ�4 dx

 
T4

wðtÞ

þ 1

2

Z l

0

EsIs½V 00
s ðxÞ�

2 dxT2
v ðtÞ þ

1

2

Z l

0

EsIs½W 00
s ðxÞ�

2 dxT2
wðtÞ:

For kinetic energy of the disk:

Td ¼ 1

2
Md ½V 2

s ðl0ÞT 02
v ðtÞ þ W 2

s ðl0ÞT 02
w ðtÞ� þ 1

2
Jdðo2

Z þ o2
z þ 2o2

xÞ

� O oZ oz

 � C1

C1

" #
Td1

Td2

" #

þ oZ oz

 � C1

�C1

" #
T 0

d1

T 0
d2

" #
þ 1

2
T 0

d1 T 0
d2


 � C2

C2

" #
T 0

d1

T 0
d2

" #
;

where

C1 ¼ rdphd

Z Rd

Rs

r2WdðrÞ dr; C2 ¼ rdphd

Z Rd

Rs

rW 2
d ðrÞ dr:
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Because oZ and oz is the periodic function of time t; in order to eliminating t; we can use
the transformation matrix

Td1

Td2

" #
¼

cosOt sinOt

�sinOt cosOt

" #
T�

d1

T�
d2

" #

then, the kinetic energy of the disk can also be written as

T�
d ¼ 1

2
Md ½V 2

s ðl0ÞT 02
v ðtÞ þ W 2

s ðl0ÞT 02
w ðtÞ� þ 1

2
JdfV 02

s ðl0ÞT 02
v ðtÞ

þ W 02
s ðl0ÞT 02

w ðtÞ þ 2O½V 0
sðl0ÞW 0

sðl0ÞT 0
vðtÞTwðtÞ

� V 0
sðl0ÞW 0

sðl0ÞTvðtÞT 0
wðtÞ�g þ 2O �W 0

sðl0ÞT 0
wðtÞ V 0

sðl0ÞT 0
vðtÞ


 � �C1

C1

" #
T�

d1

T�
d2

" #

� �W 0
sðl0ÞT 0

wðtÞ V 0
sðl0ÞT 0

vðtÞ

 � C1

C1

" #
T 0�

d1

T 0�
d2

" #

þ 1

2
T 0�

d1 T 0�
d2


 � C2

C2

" #
T 0�

d1

T 0�
d2

" #

þ O T 0�
d1 T 0�

d2


 � C2

�C2

" #
T�

d1

T�
d2

" #

For strain energy of the disk:

Pd ¼ 1
2
KdT�

d1ðtÞ
2 þ 1

2
KdT�

d2ðtÞ
2

in which

Kd ¼Dp
Z Rd

Rs

W 002
d ðrÞ þ 3

W 0
dðrÞ
r

� WdðrÞ
r2

� 2"

þ 2n W 00
d ðrÞ �

W 0
dðrÞ
r

þ WdðrÞ
r2

� 
:

W 0
dðrÞ
r

� WdðrÞ
r2

� 
r dr:

For crack-released energy:

Pk ¼ 1
2E

2
s I2s V 002

s ðl1ÞC22ðtÞT2
v ðtÞ þ E2

s I2s V 00
s ðl1ÞW 00

s ðl1ÞC23ðtÞTvðtÞTwðtÞ
þ 1

2
E2

s I2s W 002
s ðl1ÞC33ðtÞT2

wðtÞ:

APPENDIX B

The terms a2 and jiði ¼ 1; . . . ; 36Þ used in equations (32a–32d) are:

a2 ¼

g23g5
R 1
g2

%WW
002
d ð%rrÞ þ 3
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%rr
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